
Choi et al. Journal of Cheminformatics            (2023) 15:8  
https://doi.org/10.1186/s13321-023-00679-y

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Journal of Cheminformatics

COMA: efficient structure‑constrained 
molecular generation using contractive 
and margin losses
Jonghwan Choi1,2, Sangmin Seo1,2 and Sanghyun Park1* 

Abstract 

Background  Structure-constrained molecular generation is a promising approach to drug discovery. The goal of 
structure-constrained molecular generation is to produce a novel molecule that is similar to a given source mol-
ecule (e.g. hit molecules) but has enhanced chemical properties (for lead optimization). Many structure-constrained 
molecular generation models with superior performance in improving chemical properties have been proposed; 
however, they still have difficulty producing many novel molecules that satisfy both the high structural similarities to 
each source molecule and improved molecular properties.

Methods  We propose a structure-constrained molecular generation model that utilizes contractive and margin loss 
terms to simultaneously achieve property improvement and high structural similarity. The proposed model has two 
training phases; a generator first learns molecular representation vectors using metric learning with contractive and 
margin losses and then explores optimized molecular structure for target property improvement via reinforcement 
learning.

Results  We demonstrate the superiority of our proposed method by comparing it with various state-of-the-art base-
lines and through ablation studies. Furthermore, we demonstrate the use of our method in drug discovery using an 
example of sorafenib-like molecular generation in patients with drug resistance.

Keywords  Drug design, Molecular optimization, Goal-directed molecular generation, Structure-constrained 
molecular generation, Deep generative model, Metric learning, Contrastive learning, Reinforcement learning

Introduction
Structure-constrained molecular generation is a chal-
lenging problem in goal-directed molecular optimi-
sation studies [1]. The goal of structure-constrained 
molecular generation is to produce novel molecules 
with improved target chemical properties while 

resembling the molecular structure of the source drugs 
(Fig.  1a). A traditional approach in organic chemistry 
involves the identification of a molecular substruc-
ture that associates with target biological entities (e.g. 
kinase) and considers several possible modifications of 
molecular motifs, except for the key region, to identify 
a novel drug candidate with potential activity against 
a specific disease [2, 3]. However, this brute-force-like 
approach requires a considerable amount of expert 
knowledge and enormous cost because of the large size 
of the drug-like chemical space, which is estimated to 
be in the range of 1030–1060 [4]. To address this ineffi-
ciency problem, various computer-aided drug design 
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methods, particularly artificial intelligence (AI) tech-
nique-based applications, have been proposed.

AI-based methods for efficient goal-directed molecu-
lar optimisation utilize various deep generative models, 
optimisation techniques, and molecular representation 
methods [5–9]. Variational autoencoder (VAE), genera-
tive adversarial network (GAN), and normalizing flow 
are major deep generative models for molecular gen-
eration [1]. Genetic algorithm, Bayesian optimisation, 
particle swarm optimisation, and reinforcement learn-
ing are widely used techniques for molecular optimisa-
tion [10]. The representative molecular representation 
methods exploited for molecular generation are the 
simplified molecular-input line-entry system (SMILES) 
and graph-based representation; however, recent stud-
ies have attempted to use more complex representation 
methods, such as self-referencing embedded strings 

(SELFIES) and three-dimensional fixed coordinate sys-
tems [10, 11].

Many AI-based molecular optimisation methods have 
been proposed for structure-constrained molecular 
generation against diverse goals of chemical and phar-
macological properties. For instance, generative tenso-
rial reinforcement learning (GENTRL), which identifies 
potent DDR1 kinase inhibitors for the treatment of renal 
fibrosis, has been a great achievement in drug discovery 
because it succeeded in finding novel nanomolar hits 
with improved half-maximum inhibitory concentrations 
using VAE, the policy gradient algorithm of reinforce-
ment learning, and the SMILES string representation 
method [8]. JTVAE and VJTNN are graph-based molec-
ular generation models that use junction-tree VAEs to 
efficiently learn and utilize the structural information of 
the source molecules [12, 13]. The authors of JTVAE and 
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VJTNN evaluated their structure-constrained molecular 
generation performances in several optimisation tasks 
for the partition coefficient (logP), quantitative estimate 
of drug-likeness (QED), and biological activity against 
dopamine receptor D2 (DRD2) using benchmark data-
sets containing 34–99k molecular pairs generated from 
the ZINC database [12]. Copy-and-refine (CORE) strat-
egy is a variation of VJTNN and the molecular generation 
process of CORE for high structural similarity consists of 
two steps: copying some substructures of a source mol-
ecule and refining the copied ones with predefined scaf-
folding trees and an adversarial learning method [14]. 
Modof is a graph-based molecular generation method 
that identifies editable sites in molecules using the graph 
edit distance algorithm and applies several graph edit 
methods, such as removal fragment prediction and child 
node type prediction, to improve a target property [5]. 
EMPIRE is a SMILES-based molecular editing method 
to generate a new molecule with desired scaffold struc-
tures [15]. EMPIRE first identifies the scaffold structure 
of an input molecule, generate molecular fragments via 
VAE-based and building block-based models, and pro-
duce new molecular structures that resemble the input 
scaffold structures by adding the generate fragments to 
the scaffold. EMPIRE exhibited excellent performance 
for retaining input molecular structures, but prop-
erty improvement seemed to be limited due to simple 
fragment addition procedure. UGMMT is a common 
SMILES-based VAE model; however, the author pro-
posed a unsupervised learning-based training scheme 
to address the drawback of supervised approaches that 
paired molecular data in sufficient amounts might be 
unavailable in practical tasks [16]. UGMMT utilizes a 
double-cycle training scheme that can be considered 
a dual-learning method and exhibits its superiority on 
DRD2 and QED optimisation tasks.

Although these state-of-the-art models have shown 
good molecular generation performance in terms of 
chemical properties and structural similarity, there is still 
room to increase the efficiency of molecular generation 
with these two constraints. Furthermore, graph-based 
methods have been proposed more often than SMILES-
based methods in structure-constrained molecular gen-
eration studies. However, a recent comprehensive study 
demonstrated that there are no obvious shortcomings of 
SMILES-based generation methods compared to graph-
based generation methods, and SMILES-based molecu-
lar optimisation may be better [17].

To this end, we propose a novel structure-constrained 
molecular generation model called COMA, which 
utilizes reinforcement learning and metric learning 
techniques (Fig. 1b). The proposed model has the archi-
tecture of a SMILES-based VAE and is trained with two 

regularization terms, contractive and margin losses, to 
compel structurally similar molecules to have similar 
latent vectors in the VAE and encourage the decoder 
of the VAE to generate novel molecules that resemble a 
source molecule efficiently. In this study, the structural 
molecular similarity was evaluated using the Tanimoto 
similarity score [18]. After training with the contractive 
and margin losses, COMA was fine-tuned to intensively 
produce molecules with desirable properties among the 
various generated outputs similar to the source mole-
cules using property-based rewards and the REINFORCE 
algorithm [19]. We verified the superiority of COMA by 
comparing it with several state-of-the-art models on four 
benchmark datasets (Fig.  1c) and confirmed the advan-
tages of contractive and margin losses via ablation stud-
ies. Furthermore, we demonstrated the proof-of-concept 
of COMA by conducting a use-case study in which we 
explored sorafenib-like drug candidates against drug 
resistance in hepatocellular carcinoma (HCC). Our con-
tributions include the following.

•	 We designed a COMA molecular generation model 
with two novel regularization terms, named contrac-
tive and margin losses, to achieve high structural 
similarity and property improvement simultaneously 
in structure-constrained molecular generation tasks.

•	 We verified that COMA outperformed various 
molecular generation models on four benchmark 
datasets and demonstrated the merits of contractive 
and margin losses by conducting ablation studies.

•	 We demonstrated the proof-of-concept of COMA 
via the discovery task of novel compounds that were 
similar to sorafenib, but had desirable properties 
associated with drug resistance in HCC.

Results and discussion
Overview of COMA
The generative model of the COMA is a gated recur-
rent unit (GRU)-based VAE for encoding and decoding 
SMILES strings. SMILES describes molecular structures 
using ASCII codes, where each ASCII code represents 
a component of a molecular structure, such as an atom, 
bond type, or branch structure. The molecular generation 
process of COMA is simple: for a given source molecule, 
the model calculates a latent vector using a pretrained 
encoder with contractive and margin losses; then, the 
model generates a molecule using the latent vector and a 
decoder pretrained by reinforcement learning. The train-
ing process of COMA is as follows. An encoder learns a 
mapping function of SMILES strings into latent vectors 
using contractive and margin losses to improve the struc-
tural similarity performance. The role of contractive loss 
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is to embed molecules with similar structures in close 
points to each other in a latent space, whereas the role of 
margin loss is to force dissimilar molecules to be placed 
as far as possible from each other. The decoder learns 
how to generate valid SMILES strings from latent vectors, 
whereas the encoder learns a mapping function; then, it 
is further trained by reinforcement learning to selectively 
produce SMILES strings with not only high structural 
similarity to source molecules but also improved target 
properties. Details of the training process are provided in 
the Additional file 1: Fig. S1, and Algorithms S1–S2).

Overall comparison on four benchmark tasks
Dataset To evaluate the performance of the COMA, we 
used four benchmark datasets (DRD2, QED, pLogP04, 
and pLogP06) provided in [13]. The goal of the DRD2 
task is to generate a novel molecule that is more active 
toward dopamine receptor D2 than a source molecule 
under the constraint that Tanimoto similarity ≥ 0.4 . The 
score of biological activity against the dopamine recep-
tor D2 has a range of [0,1], and it is interpreted that the 
higher the score, the better the activity. The goal of the 
QED task is to produce novel molecules that are more 
drug-like than the corresponding source molecules under 
the constraint that the Tanimoto similarity ≥ 0.4 . The 
QED score has a range of [0,1] with higher scores indicat-
ing better drug-likeness. The goal of the last pLogP04 and 
pLogP06 tasks was to enhance penalized logP scores with 
similarity thresholds of 0.4 and 0.6, respectively. A penal-
ized logP score is defined as a logP score that accounts 
for the ring size and synthetic accessibility [20]. Details of 
the statistics for the benchmark datasets are provided in 
Additional file 1: Table S1.

Baseline methods We compared COMA with seven 
state-of-the-art models: JTVAE, VJTNN, VJTNN+GAN, 
CORE, HierG2G, HierG2G + BT, and UGMMT. JTVAE 
is a graph-based molecular generation model that opti-
mizes molecular properties using a Bayesian optimisa-
tion method [12]. VJTNN is a refined version of JTVAE 
with an added neural attention function, and VJTNN + 
GAN is a more refined version with adversarial training 
[13]. CORE is an improved version of VJTNN + GAN, 
which generates molecules using a copy-and-refine strat-
egy [14]. HierG2G is a graph-based generative model that 
uses a hierarchical encoding scheme [7]. HierG2G+BT is 
an improved version of HierG2G that adds a back-trans-
lation step for data augmentation [21]. The UGMMT is a 
SMILES-based generative model that is trained using an 
unsupervised learning scheme [16].

Evaluation metrics We evaluated the COMA and 
baseline models using various evaluation metrics of 
structure-constrained molecular generation (Addi-
tional file  1: Tables S2–S9). These metrics allow for 

various aspects of comparison of generated molecular 
structures, such as evaluation metrics used in Guaca-
Mol [22]. We first trained all models with the training 
dataset of each benchmark task, generated molecules 
20 times for each source molecule in the test dataset, 
and then evaluated the generated molecules with seven 
metrics:

•	 Validity the ratio of valid SMILES strings generated 
from the test data

•	 Novelty the ratio of valid SMILES strings that are not 
in the training data

•	 Property the average of property scores of valid 
SMILES strings

•	 Improvement the average of the difference of prop-
erty scores between generated and source SMILES 
strings

•	 Similarity the average of Tanimoto similarity 
between generated and source SMILES strings

•	 Diversity the average of pairwise Tanimoto dissimi-
larity between generated SMILES strings

•	 Success rate the ratio of valid and novel SMILES 
strings satisfying both constraint property improve-
ment and structural similarity.

The details of the metric calculations are described in 
the Methods section. We evaluated COMA and all base-
line models on the two benchmark datasets, DRD2 and 
QED, but were not able to evaluate two baseline models, 
including JTVAE and UGMMT, on the penalized logP 
datasets because of the out-of-memory problems raised 
by the models during experiments.

Success Rate Comparison We evaluated the success 
rate over several similarity thresholds in the range of 
0.40–0.70 (Fig.  2a–h) because the success rate is the 
most important metric for measuring how much a model 
generates valid molecules satisfying three constraints 
simultaneously: novel structure, improved property, 
and structural similarity (Fig. 1a). The proposed COMA 
model had equivalent or better performance than the 
baseline models over several threshold conditions, and 
we confirmed that COMA was able to produce molecules 
satisfying high similarity constraints (0.55–0.70) more 
than the baseline models (Fig.  2a–d). For a quantitative 
comparison, we computed the average success rate over 
the similarity thresholds and confirmed that COMA had 
average scores of 0.180, 0.301, 0.154, and 0.213 for DRD2, 
QED, pLogP04, and pLogP06, respectively (Fig.  2e–h). 
Compared to the baseline models, the scores of COMA 
were as high as 0.002–0.240 compared to the state-
of-the-art models, which demonstrate that COMA is 
more appropriate for structure-constrained molecular 
generation.
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Overall performance The remaining six metrics show 
the characteristics of the COMA and baseline models 
(Fig.  2i–l and Additional file  1: Tables S2–S9). COMA 
outperformed the baseline models on all benchmark 
datasets in terms of validity and novelty, whereas diver-
sity was relatively low for graph-based models, such as 
VJTNN and CORE. JTVAE showed better similarity 
performance than COMA in DRD2 and QED tasks but 
failed to improve property scores simultaneously, result-
ing in poor success rates. For the overall evaluation, we 
computed the total validity, properties, improvement, 
similarity, novelty, and diversity scores of each model 
(Fig.  2i–l). We confirmed that except for QED, COMA 
had the highest scores, which was consistent with the 
success rate analysis. In the deeper analysis, COMA 
showed the best averages of valid ratio ( 0.988± 0.018 ), 
property ( 1.231± 0.457 ), improvement ( 2.357± 1.940 ), 
and novelty ( 0.988± 0.017 ) over the four bench-
mark tasks, CORE had the best similarity performance 
( 0.344 ± 0.031 ), and HierG2G produced most diverse 
molecular structures ( 0.571± 0.129 ). COMA was not the 

best models in the term of similarity, in which COMA 
achieved 0.341± 0.027 , but the similarity difference 
between COMA and CORE was not significantly large. 
HierG2G exhibited the highest average diversity over the 
benchmark tasks, but it had poor improvement and simi-
larity performances of 1.922± 1.590 and 0.285± 0.035 , 
respectively, resulting in the lowest average of total score 
of 0.932± 0.299 . These experimental results demon-
strate that the proposed method, which is the collabora-
tion of contractive loss, margin loss, and reinforcement 
learning, is effective for structure-constrained molecular 
generation.

Ablation Study of Contractive and Margin losses We 
performed ablation experiments on the DRD2 bench-
mark dataset to demonstrate the advantages of the 
contractive and margin loss terms in achieving high simi-
larity and property improvement simultaneously (Fig. 3).

Statistical analysis We examined the effects of con-
tractive and margin losses on molecular latent vectors of 
VAE by examining the relationship between Tanimoto 
similarity and Euclidean distance over molecular pairs. 
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First, we sampled 20 molecules from the DRD2 train-
ing dataset by randomly selecting 10 molecular pairs 
A :=

⋃10
i=1 {Si,Ti} (Additional file  1: Tables S10) and 

defined two sets of molecular pairs with Tanimoto simi-
larity scores T  , U := {(x, y) ∈ A×A | T (x, y) ≥ 0.4} and 
V := {(x, y) ∈ A×A | T (x, y) < 0.4} . Next, for each case 
of whether contractive and margin losses were used, we 
calculated the two-dimensional embedding vectors of the 
20 molecules in A using principal component analysis 
(PCA), computed the Euclidean distance values of molec-
ular pairs in U and V with the corresponding embed-
ding vectors, and compared the distance distributions 
between U and V (Fig. 3a–d). The difference between the 
two distributions was measured using the Kruskal–Wallis 
H test. The high value of H statistics implies that paired 
molecules with similar structures are close to each other, 
and paired dissimilar molecules are located far away. 
We confirmed that the cases of usage of both contrac-
tive and margin losses had the highest H-score of 29.9 
( p < 10−7 ). Furthermore, ideal molecular embedding 
distributions in a latent space were identified only when 
using both contractive and margin losses. The case of not 
using both was higher than the case of using only one of 

the two (Fig. 3a–c) because, in the case of only contrac-
tive loss, both pairwise distances in U and V decreased, 
which did not make a difference, whereas in the case of 
only margin loss, not only was the distance in V increased 
but the distance in U also increased.

Performance Comparison We also evaluated three 
metrics: property, improvement, and similarity, for each 
trained model with or without contractive and mar-
gin losses (Fig. 3e). There were no notable differences in 
the similarity between the cases, but high property and 
improvement scores were observed only when both regu-
larization terms were used. These results demonstrate 
that contractive and margin losses play crucial roles in 
structure-constrained molecular generation. Further-
more, we confirmed that the combination of contrac-
tive and margin losses outperformed two traditional 
loss terms, triplet loss [23] and contrastive loss [24], in a 
similar molecule generation task on the DRD2 dataset. 
Both loss terms were proposed to obtain effective fea-
ture representations through metric learning. COMA 
generated target molecules with the average similarity of 
0.423 to source molecules, whereas variations of COMA 
that utilized either triplet or contrastive losses instead of 
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contractive and margin losses had the average score of 
0.269 and 0.262, respectively (Fig. 3f ).

Latent space analysis The advantage of COMA is that 
it elevates the similarity performance by exploiting con-
tractive and margin losses. These terms were designed 
to make molecules with similar structures close to each 
other in a latent space and to make structurally dissimilar 
molecules far from each other. To verify that they worked 
as intended, we conducted a linear projection analysis on 
the data used in the previous statistical analysis (Fig. 3g–
h). We selected one point S6 from the latent space, drew 
a randomly directed arrow starting from the point, and 
compared the molecular structures corresponding to the 
six points lying on the arrow. We confirmed that points 
adjacent to the starting point had a high Tanimoto simi-
larity, whereas the far points had low similarity scores. 
Hence, we determined that the proposed method is as 
effective as intended.

Use case: drug discovery for sorafenib resistance
Structure-constrained molecular generation can be 
used to discover drug candidates for patients resistant 
to chemotherapy by generating a novel molecule that 
resembles an existing drug; however, drug resistance-
related chemical properties are reduced without loss of 
pharmacophore features of the existing drug. We applied 
COMA to sorafenib, a targeted anticancer drug for hepa-
tocellular carcinoma (HCC), to enhance the therapeu-
tic effectiveness of chemotherapy in sorafenib-resistant 
HCC patients.

Association between Sorafenib Resistance and ABC 
transporters Sorafenib is an inhibitor of protein kinases 
in the Raf/Mek/Erk pathway that suppresses cell prolifer-
ation and angiogenesis in tumour cells [25]. Owing to the 
moderate therapeutic effect and veiled drug resistance of 
sorafenib [26], the discovery of new drug candidates that 
can be used as alternatives to sorafenib is an important 
research task. One of the suspected mechanisms associ-
ated with sorafenib resistance is the ATP-binding cas-
sette (ABC) transporters that pull drugs out of the cells 
[27]. Since multiple-target tyrosine kinase inhibitors 
(TKIs), including sorafenib, act as ABC transporter sub-
strates [28], it appears that the ABC transporters pull out 
sorafenib from the HCC tumour cells before it can bind 
to its therapeutic target proteins. Thus, a decrease in the 
binding affinity of sorafenib against ABC transporter 
proteins without loss of affinity against the therapeutic 
target proteins of sorafenib may alleviate sorafenib resist-
ance and elevate the therapeutic effectiveness of chemo-
therapy in HCC patients.

Binding Affinity Optimisation against ABCG2 To con-
duct a proof-of-concept of COMA for sorafenib-like hit 
discovery, we designed a goal to decrease the binding 

affinity score against the protein of ABC subfamily G 
member 2 (ABCG2) while conserving the substructures 
of sorafenib without loss of affinity against the serine/
threonine-protein kinase B-raf (BRAF), which is a tar-
get kinase of sorafenib (Additional file 1: Table S11). We 
curated 16k SMILES strings from the ChEMBL database 
[29] and constructed training datasets for the COMA 
and UGMMT (Additional file 1: Table S1 and Algorithm 
S3). We selected UGMMT as a baseline model because, 
to the best of our knowledge, it is the state-of-the-art 
SMILES-based model. After training and generating 
10k molecules with sorafenib as the source molecule, we 
compared the success rates (Fig. 4a). The success rate was 
defined as the ratio of generated novel molecules satisfy-
ing the target molecule conditions (Tanimoto similarity 
> 0.4 and affinity score to ABCG2 < 4.7 ). COMA exhib-
ited a high success rate (0.174), whereas UGMMT had a 
low success rate (0.001). The UGMMT score was too low 
because UGMMT failed to generate molecules similar to 
sorafenib, although UGMMT reduced the binding affin-
ity against ABCG2 more than COMA. We confirmed 
that the outputs of COMA not only exhibited high Tani-
moto similarities but also had molecular structures that 
resembled sorafenib to the human eye (Fig. 4b).

Docking simulation for hit identification To identify 
drug candidates for sorafenib resistance among the mol-
ecules generated by COMA, we assessed their docked 
poses on ABCG2 and BRAF. Docked poses were evalu-
ated using AutoDock Vina 1.2.3 [30] and visualised using 
Chimera 1.16 [31] and LigPlot Plus 2.2.5 [32]. To pre-
pare the ligands, we first obtained 19 unique molecules 
among the 10k generated molecules by duplicated mol-
ecule removal (Additional file 1: Table S12 and Fig. S3), 
generated three-dimensional coordinates of molecules 
using Open Babel 3.1.1 [33], (de)protonated molecules at 
pH 7.4, and made pdbqt files using meeko 0.3.0, which is 
a Python library for AutoDock. To prepare the ABCG2 
and BRAF receptors, we downloaded 3D structure files, 
including 6VXH and 1UWH, from the PDB database [34] 
for ABCG2 and BRAF, respectively, and checked their 
hydrogens using ADFR software 1.0 [35]. We utilized 
Chimera to define the box center and size and executed 
AutoDock Vina to generate 20 poses per receptor-ligand 
pair. We selected the best pose with the lowest score 
per receptor-ligand pair and compared it with that of 
sorafenib.

We found that 15 molecules had lower binding ener-
gies against ABCG2 than sorafenib (Fig.  4c); hence, 
these molecules might be hit molecules as alternatives to 
sorafenib. Next, to check whether the hit candidates had 
as strong a binding affinity against BRAF as sorafenib, 
we drew graphics for the 3D structure of the receptor-
ligand complex using Chimera and confirmed that these 
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molecules fit well with the binding pocket for sorafenib 
in BRAF. (Fig. 4d and Additional file 1: Fig. S4). Further-
more, we confirmed that the generated molecules and 
sorafenib had common interatomic contacts based on the 
van der Waals radii using the structural analysis tools and 
default parameters. The 2D plots drawn by LigPlot Plus 
also showed that the molecules had hydrogen bonds with 
residues, including Glu500(A) and Asp593(A), interact-
ing with sorafenib in BRAF.

Synthetic accessibility evaluation Finally, we evaluated 
the synthesizability of the molecules generated by COMA 
using the retrosynthesis analysis of Scifinder-n [36]. Most 
molecules could be synthesised in two steps (Additional 
file  1: Fig. S5). Because the generated molecules were 

similar to the existing drug sorafenib, good synthesiz-
ability could be guaranteed, which suggests that struc-
ture-constrained molecule generation models, such as 
COMA, would be effective tools in practical tasks for 
goal-directed drug discovery. Taken together, the results 
of the in silico analysis demonstrate that sorafenib deriva-
tives generated by COMA can be alternative drug can-
didates to sorafenib in patients exhibiting high drug 
resistance.

Conclusion
AI-based generative models for structure-constrained 
molecular generation can not only be a solution for effec-
tive drug discovery but also a powerful and explainable 

Success
- COMA : 17.4%
- UGMMT : 0.1%

Affinity(ABCG2) = 4.989
(sorafenib)

Affinity(ABCG2) = 4.212
(Tanimoto = 0.412)

Affinity(ABCG2) = 4.089
(Tanimoto = 0.476)

Affinity(ABCG2) = 4.099
(Tanimoto = 0.406)

Affinity(ABCG2) = 4.159
(Tanimoto = 0.433)

Affinity(ABCG2) = 4.347
(Tanimoto = 0.463)

Affinity(ABCG2) = 4.339
(Tanimoto = 0.477)

a

b d
BRAF, COMA018

c
Hit molecules more wealky

bindnig to ABCG2 than 
sorafenib

BRAF, sorafenib

COMA018

sorafenib

Fig. 4  Discovery of potential drug candidates derived from sorafenib. a Comparison of joint distributions over binding affinity to ABCG2 (x-axis) 
and Tanimoto similarity to sorafenib (y-axis) using kernel density estimation between COMA and UGMMT. The success rate is defined as the affinity 
score against ABCG2 being less than 4.7, and the Tanimoto coefficient being greater than 0.4 simultaneously. b Comparison of generated molecules 
achieving weak ABCG2 affinity and high similarity with sorafenib. The affinity scores were evaluated by DeepPurpose. c Comparison of binding 
energies of sorafenib and 19 molecules satisfying the constraints. The binding energy scores to ABCG2 were evaluated using AutoDock Vina. For 
each box, the center line and box limits shows the quartiles of binding energy to ABCG2, and whiskers represent 1.5x interquartile range. The 15 
of 19 molecules have higher binding energies with ABCG2 compared to sorafenib, which makes them potential drug candidates for alleviating 
sorafenib resistance. d Docking simulation results of sorafenib and the identified hit molecule COMA018 against BRAF. (Left) 3D visualization of 
ABCG2 and ligand complexes drawn by Chimera to show a binding pocket and contact regions. (Right) 2D visualization of complexes drawn by 
LigPlot Plus to show binding sites and residues
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tool for chemists and pharmacologists. Existing struc-
ture-constrained molecular generation models exhibit 
good performance in terms of generating molecules with 
better molecular properties than source compounds; 
however, they have limitations in producing molecules 
that satisfy molecular property improvement, novelty, 
and high similarity to the source molecule simultane-
ously. In this study, we designed a VAE-based generative 
model for structure-constrained molecular generation 
with two novel regularization terms of metric learning: 
contractive and margin losses. Our model achieved both 
high property improvement and high structural similarity 
via two training phases: a metric learning phase that ena-
bles the VAE to get the ability to generate molecules simi-
lar to the source molecule and a reinforcement learning 
phase that makes the VAE intensively produce molecules 
satisfying both the similarity constraint and property 
enhancement. COMA outperformed various state-of-
the-art models on four benchmark datasets: DRD2, QED, 
plogP04, and plogP06. Ablation studies demonstrated the 
importance of contractive and margin losses. Further-
more, we introduced the use case of COMA in drug dis-
covery for sorafenib resistance.

COMA exploited reinforcement learning framework 
with heuristically customized reward functions for each 
benchmark task. While the importance of reward func-
tion design in reinforcement learning is well-known 
[37], there is no standard method to find optimal reward 
functions yet, which could make COMA practical appli-
cations difficult. We recommend using the reward func-
tions designed in this study as prototypes and optimize 
them by slightly changing the reward parameters such as 
the threshold value of similarity.

In this study, we used the metric learning framework 
for structure-constrained molecular optimisation, which 
allows to improve a target property with retaining some 
molecular structures, but recent drug design studies 
devote their efforts to multi-objective molecular optimi-
sation, which might be a more challenging task. In the 
future, to address the multi-objective molecular opti-
misation tasks, we will attempt to develop new applica-
tions of our proposed contractive and margin loss terms 
by replacing structure similarity by biological activity 
similarity.

Methods
Implementation details
COMA was implemented using Python 3.6, and several 
open-source tools, including PyTorch 1.10.1 and RDKit 
2021.03.5. RDKit, an open source tool for chemoin-
formatics, was used for SMILES kekulization, SMILES 
validity check, Tanimoto similarity computation, and 
estimation of QED. PyTorch, an open-source machine 

learning framework, was used to construct and train the 
neural networks of COMA. All experiments were con-
ducted on Ubuntu 18.04.6 LTS with 64 GB of memory 
and a GeForce RTX 3090.

Tanimoto similarity
The Tanimoto similarity, which ranges from 0 to 1, com-
pares molecular structures such as atom pairs and topo-
logical torsions, represented by Morgan fingerprints. In 
this study, the Morgan fingerprints were binary vectors 
generated using RDKit with radii of 2 and 2048 bits. For 
any two SMILES strings x and y with the correspond-
ing fingerprint vectors FP(x) = (p1, p2, ..., p2048) and 
FP(y) = (q1, q2, ..., q2048) , the Tanimoto similarity score 
was computed as:

Binding affinity prediction
Predicting the binding affinity scores for ABCG2 and 
BRAF is crucial for the application of COMA for 
sorafenib resistance. In this study, DeepPurpose [38], a 
PyTorch-based library for virtual screening, was used for 
the accurate and high-throughput affinity prediction of 
more than 4.6 million pairs of molecules. We exploited 
the predictive model with message-passing and convolu-
tional neural networks pretrained on BindingDB, which 
is a public database of measured binding affinities [39], 
to generate training datasets for UGMMT and COMA 
and compute the rewards of reinforcement learning in 
COMA.

Benchmark datasets
In this study, we used four benchmark datasets provided 
in [13] and the original dataset for sorafenib resistance 
(Additional file 1: Table S1).

The DRD2 dataset contains 34k molecular pairs (source 
and target) with DRD2 activity scores derived from the 
ZINC database [40]. The DRD2 activity score ranged from 
0 to 1 and was assessed using the regression model of sup-
port vector machine from [41]. For each pair in the DRD2 
dataset, the pair of SMILES strings satisfied the similarity 
constraint that the Tanimoto similarity was greater than or 
equal to 0.4, and the DRD2 scores of the source and target 
SMILES strings were less than 0.05 and greater than 0.5, 
respectively. The QED dataset contained 88k molecular 
pairs derived from the ZINC database with QED scores. 
The QED score ranged from 0 to 1 and was calculated 
using the RDKit [42]. For each pair in the QED dataset, 

(1)T (x, y) =

2048∑

i=1

piqi

2048∑

j=1

(pj + qj − pjqj)

.
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the Tanimoto similarity between two SMILES strings was 
greater than or equal to 0.4, and the QED scores of the 
source and target were in the ranges [0.7, 0.8] and [0.9, 1.0], 
respectively. The penalized logP04 and penalized logP06 
datasets contained 98k and 74k molecular pairs derived 
from the ZINC database with penalized logP scores, 
respectively. The penalized logP score ranged from −63.0 to 
5.5. For each pair in the penalized logP04 dataset, the Tani-
moto similarity between two SMILES strings was greater 
than or equal to 0.4. In the case of the penalized logP06, the 
similarity threshold was set to 0.6.

We constructed a dataset for the sorafenib-like molecu-
lar generation to introduce an example of COMA applica-
tion. Based on the observation that the activity of ABCG2 
is related to sorafenib resistance in hepatocellular carci-
noma [27, 43], this application aimed to generate sorafenib-
like molecules with lower binding affinity against ABCG2, 
while conserving the level of affinity against the target 
kinase of sorafenib BRAF as much as possible. The dataset 
contained 231k molecular pairs derived from the ChEMBL 
database [29] with binding affinity scores against ABCG2 
and BRAF. The binding affinity score evaluated using 
DeepPurpose was pKd. For each pair in the ABCG2 data-
set, the Tanimoto similarity between two molecules was 
greater than or equal to 0.4, and the ABCG2 affinity values 
of the source and target were in the ranges [4.9, 8.4] and 
[3.3, 4.7], respectively. For BRAF, both the source and tar-
get had binding affinities greater than 6.0.

Metric learning for molecular structural similarity
COMA has the structure of VAEs. It consists of an encoder 
qφ that maps an input SMILES string to a latent vector, and 
decoder pψ that reconstructs a string from a latent vec-
tor. However, the goal of COMA is to generate a SMILES 
string that is structurally similar to a given input SMILES 
string, whereas the original VAE aims to sample a random 
SMILES string. More concretely, given a pair of SMILES 
strings with similar chemical structures xs and xt , the 
objective function of COMA L(xs, xt) is expressed as

where p(z | xs) , p(z | xt) are prior distributions, 
and D(·�·) is the Kullback–Leibler (KL) divergence. 
Equation (2) was derived from the lower bound of 
logp(xt | xs)+ logp(xs | xt) . The prior distributions were 
replaced by qφ(z | xs) and qφ(z | xt) , respectively, because 
our assumption for similarity was that paired SMILES 
strings should be embedded into an identical latent point; 
thus, the KL terms ensured that qφ(z | xs) and qφ(z | xt) 

(2)

L(xs, xt) = Ez∼qφ(z|xt )[logpψ(xt | z)]

+ Ez∼qφ(z|xs)[logpψ(xs | z)]

− D(qφ(z | xt)�p(z | xs))

− D(qφ(z | xs)�p(z | xt)),

were equal. However, the computation of double KL 
terms is complex and unstable because the gradients 
must be calculated for both trainable distributions, that 
is, qφ(z | xs) and qφ(z | xt) , in KL terms. To replace the 
KL terms for efficient computation, we utilized the Fré-
chet distance [44] that measures the distances between 
the probability distributions. The objective function of 
the COMA in Eq(2) is rewritten as

where µt and �t are the mean vector and covariance 
matrix, respectively, of a target SMILES string xt com-
puted by encoder qφ , and µs and �s are the mean vector 
and covariance matrix, respectively, of a source string xs.

Equation (3) can impose the restriction that similar 
SMILES strings have identical distributions; however, 
it is not guaranteed that structurally dissimilar strings 
have different distributions. To address this issue, tri-
plet learning was designed to create effective molecular 
embeddings for (dis)similar molecular pairs. The algo-
rithm for the triplet dataset construction from a paired 
dataset is described in Additional file 1: Algorithm S3. 
Given a triplet of SMILES strings ( xs , xt , xn ), where xs 
and xt are similar but xn is relatively different, the final 
objective function of COMA L(xs, xt , xn) is expressed as

where softplus(x) = log(1+ ex) . The softplus function 
was used to prevent the excessive spread of latent vec-
tors. In Eq. (4), the role of reconstruction loss was that 
the encoder and decoder learned how to generate valid 
and diverse SMILES strings, and both the contractive 
loss, which was equal to the Fréchet distance between 
two multivariate Gaussian distributions, and the margin 
loss, which was similar to soft hinge loss, were aimed at 
improving the performance of structure-constrained 
molecular generation in terms of similarity. COMA was 
first trained using these three loss terms (Additional 

(3)

L(xs, xt) = Ez∼qφ(z|xt )[−logpψ(xt | z)]

+ Ez∼qφ(z|xs)[−logpψ(xs | z)]

+ �µt − µs�
2 + tr[�t +�s − 2(�t�s)

1/2],

(4)

L(xs, xt , xn) = Ez∼qφ(z|xt )[−logpψ(xt | z)]

+ Ez∼qφ(z|xs)[−logpψ(xs | z)]

+ Ez∼qφ(z|xn)[−logpψ(xn | z)]
︸ ︷︷ ︸

Reconstruction loss

+ �µt − µs�
2 + tr[�t +�s − 2(�t�s)

1/2]
︸ ︷︷ ︸

Contractive loss

+ softplus(1− �µt − µn�
2)

+ softplus(1− �µs − µn�
2)

︸ ︷︷ ︸

Margin loss

,
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file 1: Algorithm S2), and then it was trained via the rein-
forcement learning procedure explained below.

Reinforcement learning for molecular property 
optimisation
COMA can translate an input molecule into a valid SMILES 
string that resembles the input via metric learning; however, 
the outputs of COMA are not yet guaranteed to exhibit 
desirable chemical properties. Reinforcement learning aims 
to encourage COMA to produce molecules that are struc-
turally similar to the given input molecule, but with desir-
able chemical properties. To achieve this goal, we utilized 
the REINFORCE algorithm [19], where an episode and a 
reward are defined as the transformation process of an input 
SMILES string and a score based on the evaluated properties 
of the output, respectively. Specifically, for a given SMILES 
string x and a given reward function R, the objective function 
is expressed as

where x̂ is an output translated from x, and zx is a latent vec-
tor of x sampled by the pretrained encoder qφ . Because gen-
erating molecules with desirable properties depends solely 
on the decoder’s ability, only the gradient of the decoder was 
calculated as follows:

In Eqs. (5) and (6), a reward function R(x̂, x) should be 
designed for property improvement while ensuring 
that the degeneration of the similarity between x̂ and x 
is within the allowable limits. In the case of DRD2 and 
QED, the reward function was defined as

where T  is a function for the Tanimoto similarity, φ is a 
property scoring function, δ is the threshold of the property, 
and ǫ is the threshold of the Tanimoto coefficient. Using 
this reward function, the decoder of COMA was guided to 
increase the probability of producing molecules with prop-
erty > δ and similarity > ǫ . In this study, we set heuristically 
δ as 0 and 0.75 for DRD2 and QED, respectively, and ǫ = 0.3 
in both tasks. In the pLogP04 and pLogP06 tasks, a slightly 
modified reward function is exploited.

We set threshold of property improvement δ as 0 for both 
pLogP04 and pLogP06, and a similarity threshold ǫ was 
set 0.3 and 0.5 for pLogP04 and pLogP06, respectively. 

(5)L(x) = −R(x̂, x)pψ(x̂ | zx),

(6)∇ψL(x) = Epψ(x̂|zx)[−R(x̂, x)∇ψ logpψ(x̂ | zx)].

(7)R(x̂, x) =

{

max{0, φ(x̂)−δ
1−δ

} if T (x̂, x) > ǫ

0 quadotherwise,

(8)

R(x̂, x) =

{

max{0, [φ(x̂)−φ(x)]−δ
1−δ

} if T (x̂, x) > ǫ

0 otherwise,

In contrast, in the case of decreasing property values, 
such as the affinity of ABCG2, the reward function was 
defined as:

Using this reward function, the decoder of COMA could 
receive a positive reward only if a molecule with property 
< δ and similarity > ǫ was generated. In the experiment 
for sorafenib resistance, ǫ was set to 0.4, δ = 4.989 , and 
we added a condition for a positive reward in which the 
affinity value against BRAF was larger than 6.235. The 
two threshold values of 4.989 and 6.235 were equal to 
the affinity values of sorafenib against ABCG2 and BRAF, 
respectively, as evaluated using DeepPurpose.

The details of the reinforcement learning procedure for 
COMA are described in the Additional file  1: Algorithm 
S3.

Evaluation Metrics
To evaluate the performance in structure-constrained 
molecular generation tasks, we used the following seven 
metrics: validity, novelty, property, improvement, similar-
ity, diversity, and success rate. More concretely, given the 
training and test datasets Xtrain and Xtest , the seven met-
rics for a molecular generation model M that generates 20 
molecules with one source molecule were defined as

(9)R(x̂, x) =

{

max{0, δ−φ(x̂)
δ

} if T (x̂, x) > ǫ

0 otherwise,

(10)Valid(M) =
∑

x∈Xtest

1

(
∑

y∈M(x) ζ(y) > 0

)

|Xtest |
,

(11)Novel(M) =
∑

x∈Xtest

1(M(x) \ Xtrain �= ∅)

|Xtest |
,

(12)

Prop(M) =
1

|Xtest |

∑

x∈Xtest

(∑

y∈M(x) ζ(y)φ(y)
∑

y∈M(x) ζ(y)

)

,

(13)

Impr(M) =
1

|Xtest |

∑

x∈Xtest

(∑

y∈M(x) ζ(y)[φ(y)− φ(x)]
∑

y∈M(x) ζ(y)

)

,

(14)

Sim(M) =
1

|Xtest |

∑

x∈Xtest

(∑

y∈M(x) ζ(y)T (y, x)
∑

y∈M(x) ζ(y)

)

,

(15)

Div(M) =
1

|Xtest |

�

x∈Xtest







1−

�

y ∈ M(x);
z ∈ M(x) \ {y}

ζ(y)ζ(z)T (y, z)

�

y ∈ M(x);
z ∈ M(x) \ {y}

ζ(y)ζ(z)







,
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where 1(p) is an indicator function that returns 1 if a 
statement p is true and zero otherwise; ζ(x) is an indica-
tor function that returns 1 if an input SMILES string x is 
valid and zero otherwise; φ(x) is an oracle that calculates 
a property score of an input SMILES string x; T  is a func-
tion for Tanimoto similarity, and δ and ǫ are thresholds of 
improvement and similarity, respectively.

Docking simulation
To verify our findings, that is, the molecules translated 
from sorafenib in the application example, we analysed 
the binding poses and evaluated the binding energy using 
docking simulation tools, including AutoDock Vina [30], 
Chimera [31], and LigPlot Plus [32]. AutoDock Vina is 
one of the most widely used open-source docking pro-
grams. To evaluate the extent to which our findings had 
less binding affinity against ABCG2, which is associated 
with sorafenib resistance, we conducted a docking simu-
lation and computed scores in terms of binding energy 
using AutoDock Vina. Chimera is a program for inter-
active three-dimensional (3D) visualisation and analysis 
of molecular structures. We used Chimera to check the 
docking poses between BRAF and several ligands, includ-
ing sorafenib, and our findings. LigPlot Plus is a program 
used for 2D visualisation of ligand-protein interaction 
diagrams. Through the output figures of LigPlot Plus, we 
identified protein residues interacting with sorafenib and 
compared them to analyse whether our molecules lost 
their binding ability against BRAF, a therapeutic target of 
sorafenib.
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(16)
SR(M) =

�

x∈Xtest

1






�

y ∈ M(x);
y /∈ Xtrain

�
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�
> 0





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