고윤용/유재서/배홍균’s paper has been invited to


Title: MASCOT: A Quantization Framework for Efficient Matrix Factorization in Recommender Systems
Author: Yunyong Ko, Jae-Seo Yu, Hong-Kyun Bae, Yongjun Park, Dongwon Lee, and Sang-Wook Kim
Abstract
In recent years, quantization methods have successfully accelerated the training of large deep neural network (DNN) models by reducing the level of precision in computing operations (e.g., forward/backward passes) without sacrificing its accuracy. In this work, therefore, we attempt to apply such a quantization idea to the popular Matrix factorization (MF) methods to deal with the growing scale of models and datasets in recommender systems. However, to our dismay, we observe that the state-of-the-art quantization methods are not effective in the training of MF models, unlike their successes in the training of DNN models. To this phenomenon, we posit that two distinctive features in training MF models could explain the difference: (i) the training of MF models is much more memory-intensive than that of DNN models, and (ii) the quantization errors across users and items in recommendation are not uniform. From these observations, we develop a quantization framework for MF models, named MASCOT, employing novel strategies (i.e., m-quantization and g-switching) to successfully address the aforementioned limitations of quantization in the training of MF models. The comprehensive evaluation using four real-world datasets demonstrates that MASCOT improves the training performance of MF models by about 45%, compared to the training without quantization, while maintaining low model errors, and the strategies and implementation optimizations of MASCOT are quite effective in the training of MF models. For the detailed information about MASCOT, we release the code of MASCOT and the datasets at: https://github.com/Yujaeseo/lCDM-2021_MASCOT.

업데이트: